Edward T. Baker

  • Principal Research Scientist

My research interests over the past 30 years have centered on two primary issues: the creation and thermal evolution of vent fields created by seafloor eruptions and the global pattern of vent field distribution along ridges and island arcs. This work is part of NOAA’s Earth-Ocean Interactions (formally VENTS) program. Data comes primarily from measurements of physical (hydrography and optical) and chemical (oxidation-reduction potential to detect reduced chemical species) tracers that can be used to track hydrothermal discharge through the water column. To address the first issue I have monitored the changes in hydrothermal heat output over several years following the creation or rejuvenation of vent fields following seafloor eruptions. To address the second issue I depend on exploration cruises primarily funded by NOAA, NSF, or foreign colleagues. For the last decade work has been focused along volcanic arcs and the adjacent backarcs in the western Pacific (Kermadec-Tonga and Mariana). To expand the global discovery of seafloor vent sites, I developed a simple Miniature Autonomous Plume Sensor (MAPR) that allows any researcher using any wire lowered to the sea floor—for rock cores, dredges, sidescan sonar—to explore for hydrothermal activity at no cost to the primary cruise objectives. MAPRs have been used on over 70 cruises in every ocean.

Selected publications

Baker, E.T. (2017): Exploring the ocean for hydrothermal venting: New techniques, new discoveries, new insights. Ore Geol. Rev., 86, 55–69, doi: 10.1016/j.oregeorev.2017.02.006,

Baker, E.T. (2016): Hydrothermal plumes. In Encyclopedia of Marine Geosciences, J. Harff, M. Meschede, S. Petersen, and J. Thiede (eds.), Encyclopedia of Earth Sciences, Springer Netherlands, 335–339

Baker, E.T., J.A. Resing, R.M. Haymon, V. Tunnicliffe, J.W. Lavelle, F. Martinez, V. Ferrini, S.L. Walker, and K. Nakamura (2016): How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. Earth Planet. Sci. Lett., 449, 186-196, doi: 10.1016/j.epsl.2016.05.031.

Beaulieu, S.E., E.T. Baker, and C.R. German (2015): Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep-Sea Res. II, 121, 202–212, doi: 10.1016/j.dsr2.2015.05.001.

Dziak, R.P., D.R. Bohnenstiehl, E.T. Baker, H. Matsumoto, J. Caplan-Auerbach, R.W. Embley, S.G. Merle, S.L. Walker, T.-K. Lau, and W.W. Chadwick, Jr. (2015): Long-term explosive degassing and debris flow activity at West Mata submarine volcano. Geophys. Res. Lett., 42(5), 1480–1487, doi: 10.1002/2014GL062603.

Hahm, D., E.T. Baker, T.S. Rhee, Y.-J. Won, J.A. Resing, J.E. Lupton, W.-K. Lee, M. Kim, and S.-H. Park (2015): First hydrothermal discoveries on the Australian-Antarctic Ridge: Discharge sites, plume chemistry, and vent organisms. Geochem. Geophys. Geosyst., 16(9), 3061–3075, doi: 10.1002/2015GC005926.

Hammond, S.R., R.E. Embley, and E.T. Baker (2015): The NOAA Vents Program 1983 to 2013: Thirty years of ocean exploration and research. Oceanography, 28(1), 160–173, doi: 10.5670/oceanog.2015.17.

Baker, E.T., C. Hémond, A. Briais, M. Maia, D.S. Scheirer, S.L. Walker, T. Wang, and Y.J. Chen (2014): Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge. Geochem. Geophys. Geosyst., 15(8), 3198–3211, doi: 10.1002/2014GC005344.

Beaulieu, S.E., E.T. Baker, C.R. German, and A. Maffei (2013): An authoritative global database for active submarine hydrothermal vent fields. Geochem. Geophys. Geosyst., 14(11), 4892–4905, doi: 10.1002/2013GC004998.

Baker, E.T., W.W. Chadwick, Jr., J.P. Cowen, R.P. Dziak, K.H. Rubin, and D.J. Fornari (2012): Hydrothermal discharge during submarine eruptions: The importance of detection, response, and new technology. Oceanography, 25(1), doi: 10.5670/oceanog.2012.11, 128–141.

Baker, E.T., J.E. Lupton, J.A. Resing, T. Baumberger, M.D. Lilley, S.L. Walker, and K.H. Rubin (2011), Unique event plumes from a 2008 eruption on the Northeast Lau Spreading Center, Geochem. Geophys. Geosyst. 12, Q0AF02, doi: 10.1029/2011GC003725.

Resing, J.A., K.H. Rubin, R.W. Embley, J.E. Lupton, E. Baker, et al., (2011), An active submarine boninite eruption at West Mata Volcano in the NE Lau Basin, Nature Geosci., 4, doi: 10.1038/NGEO1275, 799–806.